Today’s terminological post will be a contribution to the French-led insurgency that tries to replace the denomination “smooth number” (or “smooth integer“) with the much better “friable number” (in French, “nombre friable” instead of “nombre lisse“).
Of course, many readers may wonder “what is this anyway?”. And part of the point is that the better choice may lead such a reader to guess fairly accurately what is meant (possibly with a hint that this has to do with multiplicative properties of integers), whereas playing a game of “Define a smooth number” with a wide group of mathematicians may probably lead to wildly different interpretations.
So here is the definition: a positive integer n is called y-friable (or smooth, if you still insist) if all the prime divisors of n are at most y. The idea is that y should be much smaller than n, so that this means (intuitively) that n only has “small” prime factors. But the definition makes sense for all y, and for instance, any integer n is n-friable, a 2-friable integer is a power of 2, etc.
I do not wish to discuss the properties of those integers (only their name), so let me just refer to this survey by Granville for a discussion of their basic properties and of their applications to computational number theory.
The adjective “friable” (Capable of being easily crumbled or reduced to powder, OED) seems perfect to describe this type of integers: it is evocative and conveys not only something of the technical definition, but also a lot of the intuitive meaning and applicability. The other contender, “smooth”, has several problems (in fairness, it has at least one positive aspect: whatever we call them, the integers without large prime factors are extremely useful in many parts of analytic and algorithmic number theory, and the underlying current that smoothness is something desirable is not usurped): (1) it is much too overloaded (search for “smooth” without more precision in Math Reviews: 68635 hits as of tonight; for “friable”, only 19); (2) whichever meaning of smooth you want to carry from another field, it does not really mean anything here; (3) not to mention that, chronologically speaking, the terminology was already preempted by the smooth integers of Moerdijk and Reyes, which are the solutions of the equation sin π x=0 in the real line of suitable topoi (such as the smooth Zariski topos, apparently).
The chronology of the use of these words, as it appears from Math Reviews at least, seems quite interesting: the first mention it finds of “smooth numbers” in the number-theoretic meaning is in the title of a paper of Balog and Pomerance, published in 1992. However, the notion is of course quite a bit older: the standard paraphrase was “integers without large prime factors”, with many variants (as can be seen from the bibliography of Granville’s survey, e.g, A. A. Buchstab, “On those numbers in an arithmetic progression all prime factors of which are small in order of magnitude”, 1949; Balog and Sarkozy, “On sums of integers having small prime factors, I”, 1984; Harman, “Short intervals containing numbers without large prime factors”, 1991; etc : clearly, something needed to be done…).
As for “friable”, the first number-theoretic use (interestingly, the six oldest among the 19 occurences of “friable” in Math Reviews also refer to other contexts than number theory, namely some studies of models of friable materials, from 1956 to 1987) is in a review (by G. Martin in 2005) of a paper of Pomerance and Shparlinski from 2002, though “smooth” is used instead in the paper. The first occurence in a paper (and so, possibly, in print) is in one by G. Tenenbaum and J. Wu, published in 2003. It must be said that, for the moment, only French writers seem to use the right word (Tenenbaum, de la Bretèche, Wu, and their students)… G. Martin consistently uses it in his reviews, despite having to recall that this is the same as smooth numbers; however, he uses “smooth” in the title and body of his paper on friable values of polynomials (published in 2002, admittedly, and the abstract on his web page uses mostly “friable” instead…).