Posts Tagged ‘Enseignement’
Conférence: Les changements climatiques: une croyance ou une science?
Les changements climatiques sont un thème de plus en plus enseigné dans les cours de sciences. Toutefois, les informations rapportées par les médias, par l’entourage de l’étudiant ou même par la méconnaissance de certains enseignants peuvent grandement influencer la qualité de son apprentissage. Pour mieux comprendre cette problématique, la Haute école pédagogique Vaud vous invite donc à cette conférence intitulée: Changements climatiques: entre sciences, croyances et fake news. Elle se tiendra le mardi 28 novembre, à 18:30. Elle sera présentée par M. Martin Beniston, professeur honoraire à l’Université de Genève et prix Nobel de la Paix en 2007.
Informations pratiques
Mardi 28 novembre 2017 à 18h30
HEP Vaud, salle C33-229
Avenue de Cour 33, Lausanne
Entrée libre
C’est la rentrée!
L’automne s’amène avec sa panoplie d’activités, de conférences et de formations en science et en didactique. Comme première activité, le 27 septembre, je vous suggère le workshop Science on Stage Switzerland 2017. Vous pourrez aller à la rencontre des participants suisses du festival européen Science on Stage qui avait eu lieu à Debrecen (Hongrie) cet été. Vous aurez la possibilité de partager leur expérience pendant ce festival et de visiter les laboratoires publics de l’Université de Genève.
Pour connaître le programme détaillé de l’événement, cliquez ici.
Le lieu: Université de Genève
Heure: 10:00 à 16:30
Science on Stage Switzerland est une association faisant la promotion de l’enseignement des sciences. Des enseignants suisses sont sélectionnés pour participer au festival européen organisé par Science on Stage Europe. Ceux-ci doivent présenter des idées innovantes d’enseignement pour divers sujets scientifiques.
Bonne rentrée!!
Idées reçues sur la théorie de l’évolution de Lamarck
L’utilisation ou non des organes = évolution?
Certaines idées reçues observées chez les étudiants sont parfois en lien avec certains concepts de la théorie de l’évolution suggérée par Jean-Batiste de Lamarck (1744-1829) (Ha & Nehm 2013; Shtulman 2006; Kampourakis & Zogza 2007b). Brièvement, sa principale théorie consistait à reconnaître que l’utilisation ou la non-utilisation d’un organe en réponse directe à des conditions environnementales déterminait sa persistance chez un individu et sa transmission, ou non, d’une génération à une autre. Autrement dit, la théorie de la transmission des caractères acquis. Lamarck ne reconnaissait pas le rôle du hasard dans les processus biologiques, ni l’extinction des espèces. Plutôt, il croyait à la complexification des organismes par des mécanismes mécaniques (de Lamarck 1809). Encore aujourd’hui, ce type de raisonnement de l’utilisation/non-utilisation d’un organe est observé parmi des étudiants de niveau pré-universitaire et dans les premières années d’études universitaires (Klymkowsky et al. 2010; Champagne Queloz et al. 2016; Champagne Queloz et al. 2017; Nehm & Ha 2010). En contrepartie, cette représentation ne devrait pas être étiquetée « modèle Lamarck », comme on peut encore trouver dans certains manuels de biologie. En effet, bien des scientifiques de cette époque, dont Charles Darwin, partageaient cette idée (Ha & Nehm 2013). On nomme cette théorie « le transformisme ». Cette théorie suggère qu’en réponse à certains facteurs environnementaux, les organismes vont transformer un organe en fonction de son utilisation. Ainsi, les nouvelles propriétés de cet organe seront transférées à la génération suivante (Shtulman 2006; Kampourakis & Zogza 2007b).
Kampourakis et Zogza (Kampourakis & Zogza 2007a) ont montré que d’autres conceptions alternatives étaient aussi faussement associées à la théorie de Lamarck. Premièrement, Lamarck ne croyait pas en cette explication téléologique qui suggère que les organismes évoluent en suivant un plan défini prédéterminé par une force quelconque et qui conduit vers un certain idéal. Deuxièmement, on associe à tort à sa théorie le « bon vouloir » ou la « volonté » d’évoluer, alors que Lamarck lui-même rejetait ces idées. En fait, ces conceptions alternatives seraient nées d’une erreur de traduction des textes Lamarck (du français à l’anglais). Le mot « besoin » utilisé dans les textes de Lamarck, a été traduit par want (vouloir) au lieu de need to (avoir des besoins) (Mayr 1982; Kampourakis & Zogza 2007b). Les textes de Lamarck ont été lus par de notables évolutionnismes anglo-saxons de l’époque et ultérieurs. Ils ont, sans le vouloir, perpétué cette idée fausse de volonté. Troisièmement, pour Lamarck, ce n’est pas l’environnement qui induit directement les changements génétiques. C’est plutôt l’utilisation des organes en fonction de conditions environnementales données, c’est-à-dire une action mécanique. Cette conception de l’évolution par Lamarck est maintenant reconnue comme étant erronée. Toutefois, elle reste encore une idée reçue fréquente qui freine l’apprentissage des processus évolutifs.
On dit donc parfois à tort que les étudiants ont une idée « lamarckienne » des processus évolutifs (Bishop & Anderson 1990; Demastes et al. 1995). Kampourakis et Zogza (Kampourakis & Zogza 2007b) ont demandé à des étudiants âgés de 15 ans d’expliquer comment les girafes allongeaient leur cou ou d’expliquer comment certains organismes dans un environnement donné peuvent changer de couleur. La majorité de ceux-ci ont expliqué que des besoins environnementaux poussaient les girafes à s’étirer le cou ou les animaux à changer de couleurs. Ces animaux induisant donc des changements génétiques permettant l’adaptation à des situations de stress. Sinon, il y a extinction de l’espèce. Au contraire, Lamarck ne croyait pas à l’extinction des espèces, mais suggérait plutôt qu’ils se transformaient pour survivre en adaptant des organes pour des besoins particuliers.
Lamarck et les girafes
En passant, cette représentation des girafes qui doivent allonger leur cou pour atteindre les feuilles les plus hautes dans les arbres est souvent associée à Lamarck. Toutefois, il est très intéressant d’apprendre par Kampourakis et Zogza (Kampourakis & Zogza 2007b), que Lamarck n’a pas vraiment étudié les girafes. D’ailleurs, lui-même n’a jamais eu l’occasion de les observer dans leur milieu naturel dans la savane. Dans son livre Philosophie Zoologique (de Lamarck 1809), il fait une seule courte remarque à propos de cet animal (citée ici). Il ne propose donc pas de connaissances factuelles pour expliquer le mécanisme de l’allongement du cou, sauf à part que c’est par l’utilisation de celui-ci par son étirement. Parallèlement, il ne suggère pas que la volonté de l’animal est responsable de l’élongation du cou. Des observations plus détaillées des girafes auraient plutôt été faites par Etienne Geoffroy Saint-Hilaire (1772-1844), un naturaliste français. En 1827, celui-ci avait été engagé par le roi Charles X pour s’occuper d’une girafe offerte par le gouverneur de l’Égypte, Méhémet-Ali (lire ici l’histoire de la girafe Zarafa!). Saint-Hilaire partageait des idées qui s’apparentaient au transformisme de Lamarck. Enfin, l’idée que les girafes allongent leur cou pour atteindre les feuilles les plus hautes avait déjà été suggérée en 1805 par Giuseppe Gautieri (1769-1833) (pour plus de détail à ce sujet, lire ici).
Controverse : et si Lamarck avait eu raison?
On ne peut passer sous silence le fait que certains chercheurs, suite à de récentes découvertes en biologie moléculaire et en génétique (par exemple, la technologie CRISPR), ravivent le modèle évolutif suggéré par Lamarck, souvent qualifiée de modèle quasi-Lamarckien (Koonin & Wolf 2009; Wang & Wood 2011; Burr et al. 2001). Sans vouloir entrer dans les détails de cette controverse (lire plutôt l’article en français de Casane et Laurenti (Casane & Laurenti 2016), les phénomènes génétiques suivant une tendance lamarckienne restent encore très marginaux et ont très peu d’influence dans les processus évolutifs. L’action du hasard tant au niveau de l’apparition des mutations, de la fixation ou de la perte des gènes, de l’embryogénèse et de la formation de nouveaux gènes, ainsi que la sélection naturelle sont grandement plus importantes dans l’évolution des organismes vivants.
Sobriquet ou non?
La classification et la nomination des concepts sur des bases historiques et épistémologique doit être faite avec parcimonie. Il faut éviter les dichotomies faciles entre les différents courants de pensée (le mauvais/le bon modèle). Certaines conceptions alternatives d’étudiants sont souvent classifiées sous un nom générique (dans le cas ci-présent, dites lamarckiennes, « la mauvaise »). En fait, elles partagent très peu de points communs avec le modèle originel. Ceci peut faire ombrage à certains scientifiques qui ont tout de même contribué de manière significative au développement de la pensée scientifique d’un concept. Comme suggéré par Kampourakis et Zogza (Kampourakis & Zogza 2007b), il faudrait aborder les conceptions alternatives des étudiants sans faire de classification fondée sur des références historiques. Le sens de certains concepts évolue avec le temps. Il peut alors être interprétés différemment et s’éloigner ainsi de l’idée originale proposée. Les implications pour l’enseignement peuvent être importantes, car on utilise souvent des références historiques pour renforcer l’importance d’un concept enseigné. De manière générale, bien des étudiants pensent que l’évolution des organismes se fait pour combler des besoins, vers l’atteinte d’un idéal. Ce raisonnement nuit à la compréhension authentique de l’évolution. Ce qui compte avant tout dans l’enseignement, c’est de savoir repérer, fissurer et franchir (Astolfi & Peterfalvi 1993) les conceptions alternatives pour mieux faire place aux savoirs scientifiques approuvés, et ce, peu importe le sobriquet attribué.
Références
Astolfi, J.P. & Peterfalvi, B., 1993. Obstacles et construction de situations didactiques en sciences expérimentales. ASTER, 16, pp.103–141.
Bishop, B.A. & Anderson, C.W., 1990. Student conceptions of natural selection and its role in evolution. 27(5), pp.415–427.
Burr, T., Hyman, J.M. & Myers, G., 2001. The origin of acquired immune deficiency syndrome: Darwinian or Lamarckian? Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1410), pp.877–887.
Casane, D. & Laurenti, P., 2016. Le cas CRISPR, mutations « ready-made» et évolution lamarckienne d’un système immunitaire adaptatif. médecine/sciences, 32(6), pp.640–645.
Champagne Queloz, A. et al., 2016. Debunking Key and Lock Biology: Exploring the prevalence and persistence of students’ misconceptions on the nature and flexibility of molecular interactions. Matters Select, pp.1–7.
Champagne Queloz, A. et al., 2017. Diagnostic of students’ misconceptions using the Biological Concepts Instrument (BCI): A method for conducting an educational needs assessment M. Hermes-Lima, ed. PLoS ONE, 12(5), pp.e0176906–18.
de Lamarck, J.B., 1809. Philosophie zoologique,
Demastes, S.S., Good, R.G. & Peebles, P., 1995. Students’ conceptual ecologies and the process of conceptual change in evolution. Science Education.
Ha, M. & Nehm, R.H., 2013. Darwin’s Difficulties and Students’ Struggles with Trait Loss: Cognitive-Historical Parallelisms in Evolutionary Explanation. Science & Education, 23(5), pp.1051–1074.
Kampourakis, K. & Zogza, V., 2007a. Students’ intuitive explanations of the causes of homologies and adaptations. Science & Education, 17(1), pp.27–47.
Kampourakis, K. & Zogza, V., 2007b. Students’ Preconceptions About Evolution: How Accurate is the Characterization as “Lamarckian” when Considering the History of Evolutionary Thought? Science & Education, 16, pp.393–422.
Klymkowsky, M.W., Underwood, S.M. & Garvin-Doxas, K., 2010. Biological Concepts Instrument (BCI): A diagnostic tool for revealing student thinking. arXiv.org.
Koonin, E.V. & Wolf, Y.I., 2009. Is evolution Darwinian or/and Lamarckian? Biology Direct, 4(1), pp.42–14.
Mayr, E., 1982. The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Havard University Press. 974 p.
Nehm, R.H. & Ha, M., 2010. Item feature effects in evolution assessment. 48(3), pp.237–256.
Shtulman, A., 2006. Qualitative differences between naïve and scientific theories of evolution. Cognitive Psychology, 52(2), pp.170–194.
Wang, X. & Wood, T.K., 2011. IS5 inserts upstream of the master motility operon flhDC in a quasi-Lamarckian way. The ISME Journal, 5(9), pp.1517–1525.
Enseigner la biologie autrement
Enseigner la biologie
Concrètement, qu’est-ce que signifie l’enseignement de la biologie? La biologie est un domaine très vaste. Elle inclut l’étude des phénomènes moléculaires jusqu’à l’étude des systèmes écologiques complexes, tout en passant par le monde microscopique. Le contenu d’enseignement peut devenir rapidement très complexe et quasi illimité. Pour se donner une idée des concepts enseignés dans les cours d’introduction à la biologie au niveau post-secondaire ou universitaire, il suffit de se référer aux manuels les plus populaires tels que le “Campbell – Biology” ou son équivalent germanique, le “Natura“. D’ailleurs, la rédaction des contenus d’enseignement est souvent grandement inspirée des tables des matières de ces manuels. Ceux-ci présentent une histoire linéaire et logique allant souvent du niveau moléculaire au niveau macroscopique (exemple, l’écologie et la biologie développementale).
Je compare cette approche à l’enseignement programmé linéaire, une théorie behavioriste suggérée par Burrhus Frederic Skinner dans les années 50. Elle consiste à découper le contenu à enseigner en segments fins, des associés à des activités d’apprentissage et à des évaluations régulières. Les étudiants doivent obligatoirement parcourir l’ensemble des éléments d’apprentissage pour atteindre les critères de réussite d’un cours (lire ici une note de synthèse, écrite par Pierre Oléron, sur l’enseignement programmé linéaire ou à embranchements). En décomposant le contenu à enseigner en fins segments, on tend à éviter le plus possible les erreurs.
Face au mur de la complexité de la biologie
Toutefois, cette linéarité ne correspond pas nécessaire à une accentuation du niveau de complexité des concepts enseignés, comme on le fait pour l’enseignement d’un sport ou d’un instrument de musique. En effet, les premiers chapitres de la plupart des manuels de biologie abordent les concepts de l’énergie, des processus thermodynamiques et biochimiques, qui dirigent les processus biologiques. Ces concepts requièrent des connaissances de base en physique ou en chimie. Malheureusement, ces connaissances sont souvent mal maitrisées (Boo 1998; Teichert & Stacy 2002; Wren & Barbera 2013; Haglund et al. 2015; Lancor 2012), ou tout simplement pas encore apprises. De plus, les étudiants ne font pas spontanément un transfert de connaissances d’une discipline à une autre (Nagel & Lindsey 2015). Megan Nagel et Beth Lindsey (2015) ont démontré qu’il était nécessaire de “forcer” les étudiants à transférer leurs connaissances. Parallèlement, les enseignants doivent être en mesure de reconnaître les besoins interdisciplinaires des étudiants pour amorcer de tels transferts. Les étudiants se confortent souvent à cloitrer les connaissances les unes des autres, et sont supportés par un enseignement en silo (Loertscher et al. 2014; Nagel & Lindsey 2015), qui réfère à enseigner sans explicitement lier les connaissances entre elles. Les conséquences dans l’apprentissage de la biologie sont, premièrement, que certains étudiants décrochent dès les premiers cours face à ce mur de complexité, car cela ne correspond tout simplement pas à leurs attentes. Deuxièmement, d’autres se mettent en “mode automatique”, en mémorisant par coeur ce qui doit être appris pour réussir les examens. Au final, ces étudiants ne démontrent pas une compréhension authentique des concepts enseignés et échouent souvent à communiquer de telles connaissances en dehors d’un contexte d’évaluation (Champagne Queloz 2016).
Enseigner la biologie autrement
Alors, comment enseigner la biologie autrement? L’enseignement linéaire en biologie, consistant à décrire le plus petit (ex. moléculaire) vers le plus grand (ex. écologie) en passant par le microscopique, est favorisé dans la majorité des cours de biologie à tous niveaux d’éducation. Les avantages sont les suivants: 1) c’est une suite à première vue logique, 2) simplifie la rédaction et l’édition des manuels scolaires, 3) simplifie l’enseignement et l’apprentissage, qui se résume à “suivre la ligne droite” pour éviter de s’égarer, et 4) permet l’enseignement d’un grand nombre de faits.
Toutefois, l’enseignement de la biologie pourrait, selon moi (et d’autres, lire Klymkowsky et al. 2016), se faire autrement. Au lieu d’un enseignement linéaire, je vois plutôt un enseignement englobant (j’imagine le tout en forme de boucles). La complexité peut augmenter en fonction du niveau d’éducation ou du temps d’enseignement disponible. L’idée générale est de toujours revenir à son point de départ pour repartir vers d’autres niveaux d’explications ou vers de nouveaux concepts. Ma réflexion s’inspire de la théorie de Norman Crowder, (enfin, selon mon interprétation). Contrairement à la théorie d’apprentissage linéaire suggéré par Skinner, Crowder suggère des programmes d’apprentissage à embranchements présentant des segments plus détaillés et plus longs. Les étudiants sont sensibilisés au fait que plus d’une réponse est possible (lire ici la note de synthèse, écrite par Pierre Oléron, sur l’enseignement programmé linéaire de Skinner ou à embranchements de Crowder).
Les manuels scolaires présentant le contenu respectant une perspective crowdienne sont appelés “livres brouillés”, qui est traduit de l’anglais “scrambled books” (Oléron 1964). Le manuel BioFundamentals – coreBIO (disponible ici gratuitement), écrit par Mike Klymkowsky et Melanie Cooper, a été rédigé pour intégrer cette perspective englobante et interdisciplinaire de l’enseignement de la biologie. Je crois qu’il se rapproche de près à ce qu’on appelle un “livre brouillé” (et non “brouillon”!!). Dans ce livre, on montre que les processus biologiques sont influencés par une multitude de phénomènes interdépendants des uns aux autres. Trop souvent, les étudiants ne réalisent pas l’existence de tous ces liens.
Selon Herrmann-Abell et collaborateurs (Herrmann-Abell et al. 2016), il est essentiel d’expliquer que les mêmes principes chimiques ou physiques sont impliqués dans divers phénomènes biologiques. Cette équipe de recherche a développé un curriculum de 6 semaines, le “Toward High School Biology“. Ce programme a été pensé pour aider les étudiants à mieux comprendre l’influence du réarrangement des atomes et du principe de conservation de l’énergie dans les processus biologiques. Le design du programme est basé sur quatre principes: 1- présenter un ensemble cohérent d’idées scientifiques et les connections qui existent entre elles, 2- tenir compte des connaissances antérieures et des idées reçues des étudiants, 3- présenter des expériences ou des phénomènes proches de la réalité de tous les jours, et 4- examiner l’interprétation et les explications des étudiants. Cette étude, malgré certaines limites citées par les auteurs, démontre que les étudiants impliqués dans cette approche avaient moins d’idées reçues que les étudiants qui suivaient un enseignement traditionnel.
Les difficultés
Il y a beaucoup de résistance face à cette approche d’enseignement plutôt libérale. Effectivement, pour l’enseignant, il faut un grand investissement de temps et une détermination convaincante de la nécessité de cette approche. Discuter avec les étudiants prend du temps et conséquemment, il peut y avoir moins de temps pour enseigner certains faits scientifiques. De plus, certains groupes d’étudiants sont plus réceptifs que d’autres à cette approche.
Enfin, la conclusion…
L’enseignement englobant prépare mieux les apprenants à la complexité des processus biologiques, chimiques ou physiques. Elle les amène à développer un raisonnement scientifique authentique et éclairé, qui se rapproche de celle de l’expert. En effet, un expert possède certes bien des savoirs, mais sait surtout reconnaître les limites de ses connaissances. Ceci le pousse alors à chercher et à comprendre les mécanismes étudiés (parfois en s’égarant, ou même en reculant!). Le chemin scientifique n’est pas linéaire; il est plutôt composé de boucles de longueurs variées et de diverses directions. Ainsi va la science et donc, son apprentissage.
Références
Boo, H.K., 1998. Students’ understandings of chemical bonds and the energetics of chemical reactions. Journal of Research in Science Teaching, 35(5), pp.569–581.
Champagne Queloz, A., 2016. Biological Thinking: Insights into the Misconceptions in Biology maintained by Gymnasium students and Undergraduates. Zurich.
Haglund, J., Andersson, S. & Elmgren, M., 2015. Chemical engineering students’ ideas of entropy. Chemistry Education Research and Practice, 16(3), pp.537–551.
Herrmann-Abell, C.F., Koppal, M. & Roseman, J.E., 2016. Toward High School Biology: Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems. CBE-Life Sciences Education, 15(4), pp.ar74–ar74.
Klymkowsky, M.W. et al., 2016. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course. CBE-Life Sciences Education, 15(4), pp.ar70–ar70.
Lancor, R., 2012. Using Metaphor Theory to Examine Conceptions of Energy in Biology, Chemistry, and Physics. Science & Education, 23(6), pp.1245–1267.
Loertscher, J. et al., 2014. Identification of Threshold Concepts for Biochemistry. CBE-Life Sciences Education, 13(3), pp.516–528.
Nagel, M.L. & Lindsey, B.A., 2015. Student use of energy concepts from physics in chemistry courses. Chemistry Education Research and Practice, 16(1), pp.67–81.
Oléron, P., 1964. Introduction à l’enseignement programmé. Enfance, 17(1), pp.1-38.
Teichert, M.A. & Stacy, A.M., 2002. Promoting understanding of chemical bonding and spontaneity through student explanation and integration of ideas. Journal of Research in Science Teaching, 39(6), pp.464–496.