Archive for December, 2016
At ETH Zürich, teaching biology matters!
Recently, the Department of Biology at ETH Zürich, in Switzerland, has introduced new forms of teaching such flipped classroom. It aims to encourage students to become more involved in their learning (see the article here).

“Deblocking” teaching in well-established universities!
Traditional educational practices
It is often difficult to initiate educational reforms in prestigious or top-ranked universities (this idea of top-ranked universities is quite debatable… Article 1. Article 2. Article 3). It requires commitment and some humility to recognize the limits of a system and the need to change it. Usually, traditional educational practices are strongly anchored into well-establish universities. Traditional teaching refers to a lecturer who is the main actor involved into the transfer of knowledge. In this context, students have a passive role by absorbing knowledge. Common assessments are usually constructed to measure abilities of students to memorize large amount of knowledge and to distinguish/describe “the right” and the “false” statements. The principal exchange between the lecturer and the students is normally during informal oral questions sessions during or at the end of the lecture. Most of the time, only few students are willing to share their questioning or comments. In addition, the room to discuss in class is often restricted, dominated by the time requires to teach the content.
At ETH Zürich, some professors were unsatisfied with such traditional approach. They have realized that, even if students are learning something, they don’t demonstrate any ability to discuss or to develop critical thinking. Such competencies are fundamental to develop a better scientific literacy. In addition, many students interpret wrongly what we tend to teach them by demonstrating important misconceptions (read here our article about this subject). Those misconceptions are often immutable when not addressed and not revealed by common assessments.
Flipped Classroom
A flipped classroom consists for students to get acquainted with the subject of the lecture before to come in class through self-study using interactive learning exercises with texts and videos available via a learning platform. Then, students are coming in class and the lecturer introduces briefly the subject. After this short introduction, students are working in small teams to do some learning activities and discuss between them, with the lecturer and the teaching assistants. Developing such educational approach takes considerably a lot of time to prepare and update the material and a workforce to assist students in large-enrolled groups during discussion sessions.
A survey done at the end of every semester reveals that ETHZ students are highly happy with this approach. In addition, according to the lecturers, the teaching assistant and the students, the discussions immediately reveal some weak understanding, offering the possibility of the lecturer to readjust his teaching quickly. Consequently, students develop a better conceptual understanding.
Center for Active Learning (CAL)
The Department of Biology has founded the Center for Active Learning (CAL). The team is offering counselling and development services for the department’s lecturers. They collaborate with the department of Educational Development and Technology at ETH Zürich to improve the learning platform.
Educational Tasks of Universities
Prestigious or top-ranked universities should remain at the forefront of the key improvements in education, not only in research activities. The main role of universities is the formation of future professionals or researchers having knowledge, of course, but also demonstrating conceptual understanding and critical thinking. Traditional education doesn’t accord to measure such competencies. Obviously, this suggests that authorities must therefore show a certain open mind for changes. Challenging a well-establish system demands engagements, the conviction that changes are needed, but, principally, some humbleness to recognize that we can do better.
Comment élaborer des contenus d’enseignement?

Evitons l’enseignement de masse!
À première vue, cette question peut paraître anodine. Comme enseignant, notre première idée sera peut-être d’aller regarder dans les manuels scolaires qui correspondent au sujet et au niveau d’étude enseignés. En effet, on trouve souvent l’inspiration dans les manuels scolaires populaires pour aider à structurer notre enseignement. Il y a un certain sentiment de sécurité à suivre une trace pédagogique linéaire bien définie. De plus, un examen minutieux des objectifs d’apprentissage fixés par le département, par l’institution ou encore par l’état doit aussi être fait pour s’assurer que l’apprentissage des étudiants correspond aux attentes des autorités éducatives. Mais la question reste, comment le contenu d’apprentissage est-il défini? En fonction de quels besoins? Est-ce les politiques éducatives qui dirigent la rédaction de ceux-ci dans le but de répondre à des besoins de sociétés? Ou, à l’inverse, est-ce les autorités politiques et/ou économiques qui structurent les curricula? Comment les éditeurs de manuels scolaires influencent l’élaboration des objectifs d’apprentissage?
Le contenu: le parent pauvre des réformes
Roger-François Gauthier, auteur du livre “Les contenus de l’enseignement secondaire dans le monde : état des lieux et choix stratégiques” publié par l’UNESCO en 2006, souligne le fait que le contenu est le parent pauvre des réformes éducatives. On s’attarde volontiers à la révision des approches pédagogiques ou des moyens technologiques, mais on ne se préoccupe guère du contenu. Pourquoi le contenu mérite un tel désintérêt? Il y a souvent des enjeux politiques, économiques, sociaux ou scientifiques qui alourdissent et ralentissent le changement des contenus enseignés. Il y a des savoirs qui nous semblent évidents à enseigner. Par exemple, il ne nous viendrait pas à l’idée de remettre en question l’apprentissage de la lecture, de l’écriture et à compter au niveau de l’élémentaire. Toutefois, au niveau secondaire, postsecondaire et universitaire, cette définition se complexifie quelque peu. FR Gauthier présente comme exemples la question de l’initiation aux sciences ou aux langues secondes. Quel est le meilleur moment et quel niveau de complexité devons-nous atteindre avec les apprenants? Que signifie l’expression “connaissances de base” en biologie ou tout autre sujet?
Enseigner des faits ou des concepts?

Figure 1: Taxonomie de Bloom. Source: Par Blooms_rose.svg: K. Aainsqatsiderivative work: PatrickHetu — Ce fichier est dérivé de Blooms rose.svg:, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25219597
Depuis quelque temps, il y a un débat dans l’enseignement de la biologie qui tend à distinguer les connaissances factuelles et conceptuelles (Wood 2008) et à définir les connaissances de base à enseigner (Bauerle et al. 2011). Carl Wieman (sa bibliographie est disponible ici), qui s’implique ardemment dans la promotion de l’enseignement des sciences, définit le terme concept (ou connaissance conceptuelle) comme étant une idée qui peut être appliquée dans divers contextes pour expliquer et prédire un aboutissement (Wood 2008). Toutefois, la limite entre les faits et les concepts est souvent difficilement définissable. De cette dichotomie des connaissances, on s’étend vers la taxonomie des connaissances proposée par Bloom (Crowe et al. 2008). Cette taxonomie consiste à classifier les connaissances en fonction du niveau d’acquisition (Figure 1, extraite de Wikipédia). Selon ce classement (voir la description sur l’encyclopédie Wikipédia), l’idéal serait d’enseigner des savoirs qui amènent l’apprenant à développer des capacités d’analyse, de développement et de critique.
Le contenu est évolutif et faillible
Les institutions scolaires n’agissent pas seules. Leurs actions sont dépendantes des contextes sociaux, politiques, technologiques ou scientifiques donnés. Par exemple, on considère de plus en plus important d’intégrer les plus récents développements en sciences de la vie tels que la technologie CRISPR-Cas9 ou la médecine personnalisée par l’intermédiaire du séquençage génomique. Toutefois, des pressions sociales ou politiques dans certains milieux font que l’on retarde l’intégration de ces savoirs nouveaux dans les curricula, car ils ne correspondent tout simplement pas aux idéologies du moment. Encore aujourd’hui, l’enseignement de l’évolution est parfois contesté malgré l’accumulation de faits scientifiques démontrant son influence majeure sur les développements biologiques (article 1, article 2, article 3) (ici un article intéressant sur les sondages mesurant l’acceptation et la croyance des processus évolutifs). De plus, il y a toujours des questions de limite de temps pour enseigner toutes ces connaissances, de la capacité des apprenants à tout retenir et de la pertinence d’enseigner le plus de connaissances possible. Il y a nécessairement des savoirs qui devront sauter pour faire place aux nouvelles connaissances. Comment et qui désigne qu’une connaissance soit désuète ou non? En fonction de quel besoin? Parallèlement, il faut éviter d’instaurer cette tendance au “zapping” dans l’enseignement. En effet, les connaissances à enseigner doivent être les plus durables possible, mais tout en respectant le principe fondamental de la nature de la science, qu’elle est évolutive et faillible. Je reviens souvent à cette idée de besoin, dont l’évaluation et l’analyse sont souvent mises aux oubliettes, car elle demande du temps et un important niveau d’engagement pour diagnostiquer des problèmes authentiques. Elle est toutefois importante pour la définition d’un contenu d’enseignement.
Comme une histoire
Le contenu d’un cours ou d’un curriculum devrait s’écouler comme la lecture d’un bon polar, c’est-à-dire que tous les morceaux de l’histoire sont subtilement connectés les uns aux autres et à la fin de la lecture, on se dit, “eh bien, je ne m’attendais pas ça”. La tendance dans l’enseignement des sciences est de présenter et d’évaluer des connaissances de manières plutôt isolées, séparées par des chapitres qui font office de contenants hermétiques. Par exemple, le thème de l’évolution est souvent présenté dans un chapitre particulier, faisant peu référence à son influence sur les molécules ou sur les principes de thermodynamiques qui régissent les systèmes vivants, thèmes souvent abordés dans les premiers chapitres des manuels scolaires. Toutefois, dans l’apprentissage de la biologie, l’étudiant devrait comprendre que tous les processus biologiques ont été structurés par des mouvements évolutifs (“Nothing in biology makes sense except in the light of evolution“) (Dobzhansky 1973). Le “eh bien, je ne m’attendais pas à ça” devrait donc correspondre au développement d’une vision de l’ensemble des connaissances, rassemblant tous les morceaux entre eux.
Finalement, comment élabore-t-on le contenu?
Une étape importante pour structurer le contenu d’un cours est de définir les besoins en enseignement. Il est nécessaire de repérer les savoirs qui sont souhaitables d’enseigner permettant de construire un réseau de connaissances transférables dans divers contextes. Cela peut être fait via la distribution de sondages distribués auprès de différents acteurs impliqués de près ou de loin tels que les enseignants, les autorités éducatives, les étudiants, les acteurs, le secteur industriel et professionnel, etc. Cela prend du temps, ouvre bien des débats et demande un certain niveau de conciliation et de résignation. Ensuite, bien évidemment, la fiabilité et la validité des connaissances à enseigner doivent avoir été démontrées (cela peut prendre un certain temps, lire cet article sur le délai de la transposition didactique). Évaluer les contextes sociaux et politiques est aussi recommandé pour enseigner des savoirs qui ont du sens avec la conjoncture du moment. La relevance des savoirs scientifiques a souvent été montrée importante pour stimuler la motivation d’apprendre qui conduit à une compréhension authentique (Stuckey et al. 2013; McFarlane 2013). Concrètement pour l’enseignant, cela peut commencer en répondant à ces questions: quel est l’état de connaissances actuel des apprenants (les préconceptions), quelle est la situation souhaitée et quels sont les moyens possibles pour réduire la distance entre celles-ci (Watkins & Kaufman 1996)? L’approche pré/post-test en utilisant des questionnaires à choix multiples appelés “inventaire de concepts” permet de diagnostiquer rapidement les idées reçues ou les incompréhensions. Ainsi, on peut explicitement orienter notre enseignement pour résoudre les savoirs mal compris, tout en répondant aux besoins éducationnels préalablement diagnostiqués par une évaluation et une analyse de besoins.
Une question d’humilité
“Il est donc indispensable que la démarche d’évaluation des contenus enseignée telle qu’elle est proposée ici en début de processus crée en réalité une attitude générale d’humilité consistant à remettre non pas par exception, mais de façon banale son ouvrage sur le métier.” (p. 132)
Voici une citation de RF Gauthier, qui selon moi, fait une belle conclusion à mon billet (j’ai un léger manque d’inspiration!). Le contenu d’enseignement est avant tout le sujet de notre humilité; de notre capacité à reconnaitre les limites de nos connaissances et à agir pour sortir de notre zone de confort.
Références
Bauerle, C. et al., 2011. Vision and change in biology undergraduate education: A Call to Action. C. A. Brewer & D. Smith, eds., Washington, DC: American Association for the Advencement of Science.
Crowe, A., Dirks, C. & Wenderoth, M.P., 2008. Biology in bloom: implementing Bloom’s taxonomy to enhance student learning in biology. CBE—Life Sciences Education, 7, pp.368–381.
Dobzhansky, T., 1973. Nothing in biology makes sense except in the light of evolution. American Biology Teacher, 35(3), pp.125–129.
Stuckey, M. et al., 2013. The meaning of “relevance” in science education and its implications for the science curriculum. Studies in Science Education, 49(1), pp.1–34.
Watkins, R. & Kaufman, R., 1996. An Update on Relating Needs Assessment and Needs Analysis. Performance Improvement, pp.10–14.
Wood, W.B., 2008. Teaching concepts versus facts in developmental biology. CBE-Life Science Education, 7(1), pp.10–11.
Reforms in education: The content and the context
In February 2017, I’m giving a talk about my ideas on reforming biology education in Switzerland. This theme has taken origin in my doctorate thesis (available here). I have written, in an unpretentious way, that my work could be considered as a first step to reform biology curriculum. Honestly, I have probably underestimated the value of this quote, and thus, now, I have to assume it! Consequently, I’m invited to explain such ideas during the “Praktikumslehrerfortbildung”, a workshop organized every two years for Swiss teachers from different disciplines.
Reforming the content
In the first part of my talk, I will show some of the most important results of my doctorate project. For me, while the results I have collected give important insights about misconceptions in biology held by Swiss students, my contribution is only the first step in the initiation of a reform. Indeed, I consider my research project as an educational needs assessment, i.e. the identification of a problematic situation. Kaufman et al. (2002), specialists in educational curricula design, define “need” as a gap between observable and desired results. During my studies, I have diagnosed some problematic understanding of particular biology concepts by using the Biological Concepts Instrument (BCI), a multiple-choice questionnaire built on students’ thinking (click here for more information). We were interested in how students can interpret the content (the scientific knowledge) that we tend to teach them. We know that students have persistent “Carebears” thinking on how biological processes work that need to be explicitly addressed during the course of instruction.

Many students have a “Carebears” thinking on how biological processes work.
Otherwise some of those ideas can harm to construct a solid network of knowledge and to develop an authentic conceptual understanding (see this previous post). In parallel, many of undergraduates met have not demonstrated an interdisciplinary perspective of thinking, i.e. they had some difficulties to connect different disciplinary knowledge together. The project revealed some problematic understanding that should be addressed in the course of instruction, requiring some changes or adaptation to the current science curriculum at the secondary and university level. However, are the results sufficient to catalyze a national educational reform in Switzerland?
Reforming the context
Then, here come what I consider the second step. Educational reforms initiated to address some socio-scientific issues can make science education more relevant for the students (see that reference for the meaning of “relevance”, Stuckey et al. 2013). In sociology of education, briefly, some are saying that education can reform the society (for example, by promoting better health and civic engagement) (Sadler 2011). In contrast, others are saying that the society is responsible for reforming education by defining professional and economic needs (see Meyer (1977) for an interesting review about the effects of education as an institution). Despite this contradiction, I was curious to investigate some socio-scientific issues, i.e. the context, that could be improved by reforming biology curriculum in Switzerland.
Despite important progress since the last 30 years by deploying important campaign again tobacco addiction, approximately 37% of the people between 20 and 34 years old are smoking in Switzerland (here is the reference, Addiction Suisse), positioning the country on the 25th rank, out of possible 182 (the source is here). Another example is the constant increase of the numbers of cases of chlamydia, gonorrhea and syphilis in many occidental countries (WHO, 2016), including Switzerland (Statistiques, Office fédéral de la santé publique). Those public health issues could be used to develop a phenomenon-based learning approach, as Finland have initiated recently (here in an interesting article about Finnish educational reform). Many science topics such immunology, microbiology, cancer development, genetics (mutations), evolution (mutations), molecular biology (movements and structures of molecules), etc. could be taught though those socio-scientific issues as contexts in which student’s knowledge can be applied. To quote Sadler (2011, p.4): “If our goal is to help students become better able to contribute to debates and decisions about important societal issues with links to science and technology, then we need to create learning contexts such that learners actually confront some of these issues and gain experiences negotiating their inherent complexities”. By the existence of such socio-scientific issues and the low interests of its, I think that we failed in our way to teach biology (or science in general) in promoting a better science culture in earlier stages of education (indeed, usually such investigations are showing that higher level of education reduces the incidence of tobacco addiction or infectious sexual diseases).
Of course, it is hard to measure how the socio-scientific issues integrated in science curricula and reforms in education will necessarily lead to more informed citizens and better decision makers. The society will evaluate this citizenship competency (a question that could be raised: who is the society…?!). Reforming the content should be constantly done with respect to the development of scientific innovations and progress in science education. Reforming the context by catalyzing some changes in education system is also pertinent when some socio-scientific issues are observed in society. Such contexts make learning science relevant to students.
References
Champagne Queloz, A. et al., 2016. Debunking Key and Lock Biology: Exploring the prevalence and persistence of students’ misconceptions on the nature and flexibility of molecular interactions. Matters Select, pp.1–7.
Kaufman, R., Watkins, R. & Guerra, I., 2002. Getting Valid and Useful Educational Results and Payoffs: We Are What We Say, Do, and Deliver. International Journal of Educational Reform, 11(1), pp.77–92.
Meyer, J.W., 1977. The Effects of Education as an Institution. American Journal of Sociology, 83(1), pp.55–77.
Sadler, T.D., 2011. Socio-scientific Issues in the Classroom T. D. Sadler, ed., Dordrecht: Springer Science & Business Media.
Stuckey, M. et al., 2013. The meaning of “relevance” in science education and its implications for the science curriculum. Studies in Science Education, 49(1), pp.1–34.
Weiterbildung EduETH – Institut für Erziehungswissenschaft UZH
The “Institut für Erziehungwissenchaft” UZH and the EducETH organize different continuing formations, in German. Next semester, two formations are closely related to biology:
- Freitag, 3. Februar 2017, 14.00 – 17.00 Uhr
- Anmeldeschluss: 03.01.2017
- Fiona Straehl
2- Biologie: Fachwissenschaftliche Vertiefung mit pädagogischem Fokus
- Dienstags, 23.2.17 – 31.5.17, 9.00 – 9.45 Uhr
- jede zweite Woche zusätzlich 10.00 – 12.00 Uhr
- Ernst Hafen, Katja Köhler
Here is the contact:
ETH Zürich
EducETH
Susanne Schawalder
Redaktion Newsletter
susanne.schawalder@ifv.gess.ethz.ch
Forschungskolloquium der Naturwissenschafts-, Technik- und Sachunterrichtsdidaktik
In spring semester 2017, the “Forschungskolloquium der Naturwissenschafts-, Technik- und Sachunterrichtsdidaktik” takes place at Pädagogischen Hochschule der FHNW, Basel. The detailed program can be found here as the direction to find the place. The talks give insight into current subject-matter themes and research.
- Place: FHNW, Pädagogische Hochschule, 1st Floor, Room 106, Steinentorstr. 30, 4051 Basel (about 5 ‘walk from Basel SBB station. Here is the plan)
- Time: on Mondays, from 16.15 to 17.45 hours
Language: German
For more information:
Manuel Haselhofer: manuel.haselhofer@fhnw.ch
You are currently browsing the DidacBiol blog archives for December, 2016.